Avucust 1976

ROBERT H. KRAICHNAN

Eddy Viscosity in Two and Three Dimensions

RoBERT H. KRAICHNAN

Dublin, New Hampshire 03444
(Manuscript received 21 January 1976, in revised form 7 April 1976)

ABSTRACT

The test-field model for isotropic turbulence is used to examine the effective eddy viscosity acting on
wavenumbers <k., due to interactions with subgrid-scale wavenumbers, defined as wavenumbers > k. In
both two and three dimensions, the effective eddy viscosity for k<k. is independent of & and of local spec-
trum shape. In two dimensions, this asymptotic eddy viscosity is negative. The physical mechanism re-
sponsible for the negative eddy viscosity is the interaction of large-spatial-scale straining fields with the
secondary flow associated with small-spatial-scale vorticity fluctuations. This process is examined without
appeal to turbulence approximations. For k»—k<&k,, the effective eddy viscosity rises sharply to a cusp
at k=Fkny, if k., lies in a long energy-transferring inertial range in either two or three dimensions or in a long
enstrophy-transferring inertial range in two dimensions. The cusp behavior is associated with a diffusion in
wavenumber due to random straining, by large spatial scales, of structures with wavenumber close to kn,.
This behavior makes the use of a k-independent eddy viscosity substantially inaccurate for the three-dimen-
sional inertial range. In the two-dimensional enstrophy inertial range, the cusp region contributes most of
the enstrophy transfer across k... The transfer function is squeezed into a region about &, whose width is of
order kg, where k, is a characteristic wavenumber at the bottom of the enstrophy range. If k.,>>ko, the shape
of the transfer function does not have a universal form but instead depends on the spectrum shape near k.
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Representation of this transfer by an eddy viscosity seems highly unjustified.

1. Introduction

This paper is intended to illustrate some limitations
on the use of an eddy viscosity to represent the dy-
namical effects of small-scale turbulence, especially ia
two-dimensional flows. Our principal tool will be the
approximation of turbulent energy transfer by closure
formulas of the direct-interaction family.

The basic idea of eddy viscosity is that scales of
motion of given size are acted on by smaller scales as
if the latter were an augmentation of the equilibrium
thermal agitation. Throughout the history of the study
of turbulence, this concept has been highly useful in
visualizing and parameterizing turbulent transport
processes and the passage of turbulent energy between
different scales. With the advent of large-scale com-
puter simulations of flows, eddy-viscosity parameters
have been used to represent the effects of subgrid-scale
motions. Parameterization of subgrid turbulence is
discussed, for example, by Smagorinsky (1963) and
Leith (1972).

In three-dimensional flow, the analogy between sub-
grid scales of turbulence and thermal agitation is flawed
because the motion displays a continuous distribution
of scale sizes. In typical laboratory and geophysical
flows, the time and space scales of almost all the thermal
agitation are well separated from the smallest hydro-
dynamic scales which are appreciably excited. It is this

which permits representation of molecular viscous and
diffusive effects by local differential operators. In con-
trast, the division of the hydrodynamic motion into
subgrid scales and explicit scales is arbitrary.! The
largest subgrid scales are as large as the smallest
explicit scales, and this means that their interaction
cannot be correctly described by a simple operator of
the form wea4yV? (Corrsin, 1974). In two-dimensional
flow, the eddy-viscosity concept meets with additional
and more severe difficulties, connected with the reverse
flow of kinetic energy from small scales to large scales
(Fjgrtoft, 1953). Molecular viscosity does not exist in
a strictly two-dimensional fluid (Dorfman and Cohen,
1970). There is no transformation of hydrodynamic
energy into microscale thermal agitation, and the
thermal equilibrium of such a fluid is itself anomalous
(Kraichnan, 1975b). In practice, we are not interested
in two-dimensional fluids but rather in the two-
dimensional macroscopic hydrodynamics of a three-
dimensional fluid. Nevertheless, the non-existence of
molecular viscosity in two dimensions correctly suggests
a severe breakdown of the eddy-viscosity representation
of subgrid scales. In the present paper, we shall analyze
in some detail the dynamics of interaction between

! We shall use the terms explicit scales and explicit wave-
numbers to denote those scales and wavenumbers which are not
included in the subgrid-scale motion.
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explicit and subgrid scales in two dimensions. In order
to clarify the phenomena, we shall also treat the subgrid-
scale representation of a passive scalar field advected by
turbulence. Some of the difficulties with eddy viscosity
in two dimensions have been discussed previously by
Leith (1971, 1972).

We have tried to include some background for the
present work by giving, in Section 2, a fairly detailed
review of the turbulence approximations which are
used. The references cited therein give more informa-
tion, including the results of numerical tests of the
approximations. The reader who wants a minimum of
involvement with the mathematical development can
start with Section 7, which refers back to key equations
in the preceding text. Section 5, which treats the
physical mechanism of the negative eddy viscosity
encountered in. two-dimensional flow, is largely self-
contained and can be read without the analysis which
goes before it.

With the exception of Section 3, the analysis is con-
fined to the effects of subgrid scales on energy and
enstrophy transfer in isotropic turbulence. Thus the
results are not directly applicable to the use of an eddy
viscosity to represent subgrid scales in computer simula-
tion of a single flow, which is locally anisotropic every-
where. However, the difficulties with eddy viscosity
which we bring out reflect physical mechanisms which
can be expected to operate in general.

2. Energy-transfer approximations

The direct-interaction approximation (Kraichnan,

1959) provides an economical and internally consistent
analytical framework in which to investigate eddy-
viscosity concepts. An advantage over simpler phe-
nomenological formulations is that it automatically
includes the nonlocalness effects described in Section 1
and applies to inhomogeneous, anisotropic flows as well
as to homogeneous flows. The direct-interaction ap-

proximation (DIA) appears to be the simplest turbu-

lence approximation with these properties that con-
sistently handles turbulence statistics at the level of
the space-time velocity covariance. The approximation
is invariant to Fourier transformation of the velocity
field; it can be derived and manipulated either in x space
or wavevector space. The DIA leads also to a family of
related approximations of similar structure. In this
section, we shall present some basic equations of the
DIA itself and of one relative, the test-field model
(TFM). We shall deal with homogeneous turbulence,
for which it is more efficient to carry through the
analysis in wavevector space.

The DIA equations can be derived in several ways
(Kraichnan, 1959; Herring and Kraichnan, 1972).
What follows now is intended as a plausibility argument
rather than a derivation. Consider incompressible
Navier-Stokes flow in a box of side L with cyclic
boundary conditions. If ‘the velocity field G(x,f) is
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expanded in the Fourier modes allowed by these
boundary conditions,

u(x,.)=3. exp(tk-x)u(k,s), (2.1)

then the Navier-Stokes equation can be written in the
form '

(3/ 0t+vk?)ui(k,t)
= —iknPij(K) 2 uipun(qt). (2.2)
pHa=k
Here » is kinematic viscosity and
P,‘j(k)=5,‘j—kikj/k2 (23)

incorporates the effects of the pressure term and serves
to maintain the incompressibility property

kiui(k,f)=0. (2.4)

The total kinetic energy per unit mass is

3 2wk u*(k,t).

1t is conserved by the nonlinear right-hand side of (2.2).
Moreover, there is a detailed conservation property for
each triad of interacting wavevectors. Suppose that
only the terms involving a particular pair (p,q) were
retained in (2.2) and that, correspondingly, only the
terms involving the pair (k, —q) were retained in the
equation of motion for u(p,f) and only the terms
involving the pair (k, —p) were retained in the equation
of motion for u(q,#). The resulting equations conserve
the triad kinetic energy

3 [u(k) |2+ {u(p)|*+ u(a)|*]-

Note here that u(k) =u*(—k) because i(x,?) is real.

The conservation property implies that certain phase
correlations develop among the Fourier amplitudes for
different wavevectors; the amplitudes cannot remain
statistically independent under the Navier-Stokes
equation. To see this suppose that #;(p) and #.(q) on
the right-hand side of (2.2) were independent random
variables. Then the right-hand side would be a random
forcing term for u;(k). On the average, this would pump
energy into mode k, for every k, thereby contradicting
the conservation of energy by the totality of nonlinear
terms. -

The DIA may be regarded as a device for neglecting
the statistical correlations among the terms contributing
to the right-hand side of (2.2), while systematically
correcting the energy budget by adding an additional
term which has the form of a generalized eddy damping.
Thus the approximation is equivalent to replacing (2.2)
by a modified, model dynamical equation. The model
equation is most simply expressed in the case of iso-
tropic turbulence, in which case it has the explicit form
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(Kraichnan, 1970; Leith, 1971 ; Herring and Kraichnan,
1972)

(6/6t+vk2)m(k,t)+/ n(k,t,5)ui(k,s)ds
=Pl T @00 (9

Here £:(p,f), which replaces u;(p,f) in the nonlinear
terms, is a multivariate-normal velocity field which is
related to the field #;(p,?) only in that they have the
same covariance functions:

(gi (k,t) gi* (k,t,)> = <u'i (k;t)ui* (k)t,))’

where the angle braces denote averages over ensemble.
The function 7n(k,,s) in the damping term which re-
stores energy conservation is a functional of the co-
variance and Green’s function of the # field. It is given
by

o — / / ba(kp )G P,9) U, t,5)padpda, (2.7)
A

(2.6)

where the scalar function G(p,¢,s) is the Green’s function
associated with (2.5) and the covariance scalar U(g,t,s)
is defined by

Ulkts)= (L/ 20wk u* (Bs)).  (2.8)

The coefficient b;3(%,p,q), which arises from dot products
of P;; operators, is given by

bs(k,p,q) = 5k~ sin’a (B —¢*) (p*— ") +A%p"], (2.9)

where o is the internal angle opposite £ in a triangle
whose sides are %, p and ¢. The integration in (2.7)
extends over all wavenumbers p and ¢ which can form
such a triangle. Egs. (2.7)-(2.9) are for three dimen-
sions; the two-dimensional forms will be given later.

The time ¢{=0 which forms the lower integration
bound in (2.5) is an initial time at which the » field is
assumed to be multivariate normal. The system of
equations is completed by equations of motion for G
and U, which follow from (2.5). They are

4
8/ ARG (k) + / 1, 8)Gkys,t) =0,
0

Gkt =1, (2.10)

(8/0t+-vE2) Ukt

=7rk/‘/; b3(k:P;Q)[/: G(k,t’,s)U(p,t,s)U(q,t,s)ds

‘I
- / G(ﬁ,t,sw(k,t',s)U(q,t,s)ds]pqdpdq. 2.11)
0

In (2.11), the second term on the right-hand side arises
from the » term in (2.5). Egs. (2.10) and (2.11),
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together with the symmetry property
Ukt )=U(kt 1), (2.12)

can be integrated forward together from initial values
U(k,0,0) to yield G(k,t,t')(#>1") and U(k,t,t") for all ¢
and ¢ greater than zero.

Before discussing the properties and degree of
uniqueness of (2.5) and the relations that follow from
it, we shall present the equations describing the balance
of energy. The total kinetic energy of hydrodynamic
motion, per unit mass, may be written as

/ E(k,t)dk,
0

where the energy spectrum E(k,f) is given by

E(k,j) =2nR2U (k1) (2.13)

E (k) obeys
(0/0t+ 20k E(kt) =T (k 1), (2.14)

where the energy transfer function 7'(%,2) is found by
use of (2.11) to be

T(ky)= 4k / / ba(k,,0) / 4TC(k,t,5) U pis)
A 0

The function T'(k,f), as given by (2.15), obeys iden-
tically both the overall and detailed conservation
conditions on the nonlinear dynamics. The overall
conservation relation is

/ i T(k,1)dk=0. (2.16)

To express the detailed conservation relations, we write

i
Tk / f T(pal)ipdg, — (2.17)

where T(k,p,q,0)=T(k,q,p,) is the total contribution
to T(k,t) from interaction of wavenumber % with wave-
numbers p and ¢. Thus

T (k,p,g,t) =T (k,p,q,0)+T (k,q,0,0),

where T'(%,p,q,t) is the integrand of the (p,q) integration
in (2.15). The detailed conservation relation is then

T (k,p,g,t)+T (9, k1) + T (g,%,0,6)=0.  (2.18)

If the analysis leading from (2.5) to (2.15) is traced
in detail, it is found that the term in (2.15) involving
G(k,t,s) arises from the random driving term on the
right-hand side of (2.5), while the term involving
G(p,t,s) arises from the 5(k,t,s) term on the left-hand
side of (2.5). It can be shown that the G(k,t,s) term in
(2.15), and in the. corresponding expression for
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T(k,p,q,0), is typically positive. It is always positive for
small ¢ and remains positive for all £ unless the correla-
tions U(p,t,s) and U(q,t,s) are very unlikely functions
of £ and s. We therefore call this term the input term
in (2.15). The term in G(p,t,s), arising from 5(&,t,s), is
therefore clearly necessary to maintain energy conserva-
tion. We shall call it the oufput term. It is a dynamical
damping term analogous to a radiation damping.

The DIA form (2.7) for n(k,,s) is obtained in the
formal derivations of the DIA without explicit appeal
to the condition that conservation be maintained. Now,
if we grant a model equation of the form (2.5), with the
random right-hand side as specified, how unique is
(2.7)? The answer, which we shall not prove, is that the
detailed conservation condition, together with the
requirement that the model system exhibit an absolute
inviscid statistical equilibrium identical to that of the
real system, leads uniquely to (2.7). We are assuming
here that the isotropic turbulence is non-helical
(reflection-invariant). If it is not, the DIA damping is
altered. It remains uniquely determined if we add
helicity conservation to the list of conditions and in-
clude inviscid equilibria with helicity. We should also
remark here that in two dimensions the uniqueness of
the DIA form for 5(&,2,5) follows if enstrophy conserva-
tion is included in the list of conditions rather than
helicity conservation (there is no helicity in two-
dimensional flow).

In summary, then, if phase correlations in the non-
linear part of the Navier-Stokes equation (2.2) are
neglected, energy conservation and other fundamental
consistency requirements lead to the DIA model system
(2.5)-(2.7), in which there appears the generalized
eddy-damping function 5(k,,s). We shall see in sub-
sequent sections that under suitable limiting conditions
the n term in (2.5) goes over into an eddy viscosity term
of the type v.aayV? but in general we note that the 9
term is nonlocal in time and has a complicated k depen-
dence, with the result that it is also nonlocal in space
when back-Fourier-transformed. This nonlocalness is
an essential consequence of the continuity of scale sizes,
and it is mandated by the energy-conservation condi-
tion. The eddy-damping on wavenumber % takes the
ordinary local form only when the contributing wave-
numbers p and ¢>k. We also note from (2.5) that no
pair (p,9) act on % purely as a dynamical damping;
there is always in addition the random forcing term on
the right-hand side.

Several relatives of the DIA can be obtained by
altering the form of the random nonlinear terms in the
model equation or by modifying the final statistical
equations (2.10) and (2.11) (Leith, 1971; Herring and
Kraichnan, 1972). We shall use one of these, the test-
field model (TFM), for all explicit calculations in the
present paper. In the TFM (Kraichnan, 1971a), the
right-hand side of (2.5) is replaced by nonlinear terms
which are a white noise in time. This is a bad approxi-
mation for time correlations but it has two advantages.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 33

First, the resulting equations are local in time and are
therefore simpler to handle. Second, it gives a better
representation of inertial-range dynamics than the DIA
because the flexibility is provided to remove some
spurious effects which arise in the DIA.

The TFM model equation, replacing (2.5), is

Lo/ t-+vk?+n(k,2) Ju:(k,2)
= —iknPii(K)w(t) L [8p() PE(01)ER(g,0). (2.19)

pta=k

Here §;(k,?) is again a random velocity field, related to
u:(k,t) by (2.6). The new function w(#) is a random,
zero-mean, white noise process which satisfies

wOw())=8(—1).

The function ,,(f) is a characteristic interaction time
for the wavenumber triad (k,p,g). It makes (2.19)
dimensionally correct, and it replaces correlation times
which arise in the DIA as integrals over time-displaced
correlations. Thus, there is no time integration in the
dynamical damping term in (2.19), and 5(4,¢) is given by

(2.20)

(k)= f / ba(k,,0)05s VU @,0)padpdy, (2.21)

where U(g,0)=U(g,t,t).

The characteristic times 8ip,(f) for the TFM are
determined by equations which measure the self-
distortion of the velocity field by advection and pressure
forces (Kraichnan, 1971a). In’ essence, Orpo(t) is the
root-mean-square reciprocal of an effective shear which
acts, by its distorting effect, to limit the build-up of
phase correlations among the triad (k,p,9). Egs. (2.19)-
(2.21) lead to an energy equation of form (2.14), with
T(k,p,q,t) [defined by (2.17) et seq.] given by

T(k;P,Q;t) = 4772k3b3 (k)P)Q)Pq

X[Otpg (O U (p,8) =0 (YU (R,)IU (g,0).  (2.22)
This relation, together with an equation for Orpa(t)
which we shall not reproduce here, form a closed set
which permit the determination of U(k,t) and Orpg(l)
from initial values 8;,,(0)=0 and U(k,0). The TFM
transfer function T'(%,f) obeys the conservation condi-

‘tions (2.16) and (2.18). The TFM also satisfies other

consistency requirements satisfied by the DIA for ‘ghe
single-time quantities U (k,t). However, it does not give
a satisfactory representation of time-displaced correla-
tions, and this is the price paid for representing the
nonlinear terms as a wihte-noise process. Further
details of the TFM equations and their properties are
given by Herring and Kraichnan (1972) and by Leith
and Kraihcnan (1972). .

In a steady state, where U(k,f) has the time-inde-
pendent value U(k), the DIA transfer function also
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takes the form (2.17), (2.22), but with

Oepa= / Gkt ) U(pyt,8)Ugys)ds/ LU U],

{—o,

(2.23)

To reach such a steady state, some kind of external
driving must be added to the Navier-Stokes equation,
and to the DIA and TFM model equations, to replenish
the energy removed by viscosity. We shall not introduce
such driving forces explicitly because they do not
change the form of the transfer functions in either DIA
or TFM.

3. Three-dimensional inertial range

The total rate of energy transfer per unit mass to all
wavenumbers above a given wavenumber &, is

H(km)= / i T(k)dk= — f T Tk, (3.1)
km 0

where the two integral expressions are equal because
of (2.16). We have omitted the time arguments in (3.1).
The total contribution to 7'(k) from triads (%,p,q) such
that k<kn and p and/or ¢> k. is

1 7
TGkl =~ f / Tpgipds, b<km (3.2)
A

where the integration [ [/, signifies p and/or ¢> k. It
follows from the detailed conservation property (2.18)
that

(k)= — / " T ). (3.3)

Finally, an effective eddy wiscosity acting on modes of
wavenumber k due to dynamical interaction with wave-
numbers> k,, may be defined by

v (k| bm) = —T (k| k) /[2RER)], k<bm (3.4)

If k< k., the condition that &, p and ¢ form a triangle
means that |p—g| <k«Kq for all contributions to the
integral in (3.2). In this case, all the quantities that
enter T'(k,p,q) can be expanded in powers of p—g, with
the result that the p integration can be performed. We
shall omit the somewhat tedious algebra and state the
final result, which is

(k| ) = (21/15) / 0l TU(Q)+adU @)/ d a4,

k&km. (3.5)

This is the leading term in an expansion in powers of
k/km.

If ¢>>k, then the interaction time 6,4 becomes inde-
pendent of % unless the energy spectrum rises very
rapidly toward small wavenumbers. Thus (3.5) is
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independent of % for sufficiently well-behaved spectra
and therefore conforms to the usual concept of what an
eddy viscosity should be. The analysis leading to (3.5)
shows that for A&k, the quantity »(%|k,) arises from
the output term of the transfer function exclusively;
that is, it comes from the 5 term in the model equation
(2.5) or (2.19).

Now we wish to examine the explicit form taken by
T'(k|kn) and »(E|%,) in the case of the Kolmogorov
inertial range, where

E(k)=CeBk5h, (3.6)

Here C is a numerical constant of order 1 and e is the
rate of dissipation of kinetic energy by viscosity per
unit mass. Energy conservation implies that for % in
the inertial range, where the direct effect of viscosity
is negligible,
(k) =¢, 3.7
independent of k.
The TFM yields a Kolmogorov inertial range

(Kraichnan, 1971b), wherein
Oipg=[Cluet (B +pi+g9) 17,

with p another numerical constant of order one. The
energetic interaction among the wavenumbers in this
range has been found to be local in the following sense.
Let us write

(3.8)

(k)= / 1 0()vdv, (3.9)

where Q(2) is a measure of the contribution to II(k)
from different shapes of wavenumber triangle. Here v is
defined as the ratio of the smallest of the three wave-
number legs of the triangle to middle-sized leg. It has
been found that

Q ()~ In(1/v),

which shows that triangles with very large wavenumber
ratios contribute negligibly to the inertial-range
transfer. A plot of Q(v) is given by Kraichnan (1971b).

If (3.6) and (3.8) are substituted into (3.5), the
asymptotic eddy viscosity (3.5) becomes

v(k| bm) =f5Cl b, kkm  (3.11)

The full functions T'(k|kn) and v(k|kn) for k and kn
both in the inertial range can be obtained by performing
the integrations in (3.2) numerically. Fig. 1 shows
(k| km)/v(0| km), where v(0] k) denotes the right-hand
side of (3.11), and the function

21, (3.10)

lem

TG |ka)dk.  (3.12)

T(E | ) = —6—1/

k

The latter [note (3.3)] is the fraction of the total energy
transfer across k., which comes from wavenumbers
k'>k. The third curve in Fig. 1 shows »;(k|%m), which
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Fic. 1. Energy transfer across k., in the three-dimensional inertial range. Curve 1, normal-
ized eddy viscosity »(k|km)/v(0|kn); curve 2, integrated transfer I (k|kn); curve 3, input

contribution ~;(%|km)/» (0| k).

we define as the part of »(%|k,) which arises from the
input term [involving U(p)U(qg)] in (2.22).

Fig. 1 indicates that for k/kn<0.5, »(k|k.n) is within
about 159, of its asymptotic value (3.11). These & con-
tribute approximately 259, of the total transfer across
km. About 509, of the total transfer comes from
k> 0.75k,, and for these wavenumbers v (k| k,)/v (0| %.,)
>1.6. At k=Fkm, v(k|kn), and consequently T(k|k.,),
has a cusp where it rises to ~35.24v(0|%,). Near the
cusp, v(km|km)—v(k|kn) goes like (kn—k)}. The
v;(k| k) contribution is a negligible fraction of »(%|k,)
for k<0.5k,, rises to 509, and 1009, of v»(klk.) at
k~0.8%,, and k~0.9%,,, respectively, and diverges like
(kn—Fk)™?3 as k— k,. The nonlocalness of energy

" transfer in wavenumber displayed in Fig. 1 is similar
to that inferred from a phenomenological model by
Tennekes and Lumley (1972).

The transition from constant eddy viscosity at k<<k,,
to the cusp-like behavior at ., —k <k, expresses some
basic physics of the Navier-Stokes equation. If &<k,
the wavenumber triads contributing to T(k|km) all
have p and ¢>>k. This gives a separation of scales
sufficient to make the analogy to molecular viscosity a
good one. The dynamical mechanism at work is then
the random displacement, by the high-wavenumber p
and ¢ excitation, of momentum associated with the low-
wavenumber % excitation. This implies, on the average,
a decrease in the kinetic energy of the k excitation, and
energy conservation requires that the lost energy appear

in the p and ¢ excitation. If k,—k<kn, this eddy-
viscosity mechanism is still at work, giving contribu-
tions to T'(k| k) which involve p and ¢>>k... However,
there is now an additional mechanism involving triads
with ¢ (or p)<ky,. If g is the low wavenumber, this
mechanism consists of coherent straining of the high-
wavenumber (£ and p) excitation by the random shear
associated with g. The result is a diffusion process in
wavenumber in which there is a two-way exchange, by
stretching and unstretching, across the boundary k.
The input term in (2.22) then describes the “unstretch-
ing” whereby excitation at wavenumbers slightly
greater than k,, is transformed to excitation at %k, and
the output term describes the opposite process. The
two terms nearly cancel for low ¢ triads and the slight
excess of output over input gives the net contribution
to T(k|k,») which is responsible for the rise of v(k|km)
to a finite cusp at k=k,.

We have so far considered, and shown in Fig. 1, the
ideal asymptotic case in which the inertial range
continues to £=0. If, instead, the spectrum is cut off at
a bottom wavenumber ko, then the very low ¢ contribu-
tions to T'(k| kn) are removed. The result is a rounding
off of the cusp in »(%|k.) and the removal of the diver-
gence of v;(k|kn) at k=Fkn. If koK kn, it is clear from
comparing the integrated transfer curve in Fig. 1 with
the »(k|kn) curve that the order of 509, of the total
inertial-range energy transfer comes from the region
dominated by the coherent straining mechanism, with
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v(k|kn) substantially greater than »(0|£,). Or, to put
it differently, only about half of the energy transfer can
validly be ascribed to an eddy-viscosity mechanism
analogous to molecular viscosity.

What now are the implications for subgrid-scale
representation? If a spectral representation of the
velocity field is used (Orszag, 1971) and the Fourier
modes are reasonably dense (spacing between allowed
wavevectors in & space small compared to wavenum-
ber), then T'(k| k..) gives directly the effect on the energy
of the explicit modes due to interaction with subgrid
modes above the cutoff wavenumber k.. As noted by
Leith (1971), the inertial-range spectrum E(k) will be
preserved undistorted right up to the cutoff if molecular
viscosity in the truncated TFM model equation is
formally augmented by the function »(k|k.) plotted
in Fig. 1. Truncation of the model equation here means
removing from both the » term and the right-hand side
of (2.19) every contribution that involves a wave-
number> k.. Favorable tests of the TFM against
computer simulations (Herring and Kraichnan, 1972)
suggest that the same »(k|k..) should give a reasonably
good representation of the energetic effects of subgrid
scales if the Navier-Stokes equation itself is truncated.

However, there is already a serious difficulty even if
consideration is restricted to the wavenumber spectrum
and more refined details of the flow are ignored. This is
that v(k|kn) for any <k, is actually a functional of
E(%') for all ¥’ <km. The normalized function »(k|kn)
shown in Fig. 1 is correct only if the spectrum is that
given by (3.6) and is quasi-stationary. Thus this eddy-
viscosity function will not, in general, give correct
results if applied to simulations of flows which are
evolving and do not satisfy (3.6). Only for k<<km,
where (3.5) is valid, does the dependence on E(k’)
disappear.

Despite these difficulties in principle with eddy-
viscosity representation of subgrid scales, it may
nevertheless be possible to use even very crude eddy
viscosities in practical applications. Fig. 1 shows that
the asymptotic constant eddy viscosity is a good
approximation to within one octave in wavenumber
from k... Correspondingly, some experience with simula-
tion of moderate Reynolds number turbulence (Orszag
and Patterson, 1972; Herring ef al., 1974) and with
treatment of such turbulence by closure approximations
(Kraichnan, 1964; Herring and Kraichnan, 1972)
indicates surprising insensitivity of the spectrum to the
nature of the cutoff at k... Even a cutoff with zero eddy
viscosity (conservative reflection of energy back to
lower wavenumbers) is compensated principally by a
spurious rise of the spectrum within an octave of k.
The spectrum at lower wavenumbers is almost un-
affected. The need for a faithful representation of
subgrid-scale effects on explicit scales may be strong
only when computing economy does not permit the
luxury of a throw-away inaccurate octave of explicit
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scales. And we must note here that the highest octave
in fact contains most of the modes.

4. Two-dimensional energy inertial range

It has been suggested (Kraichnan, 1967 ; Leith, 1968;
Batchelor, 1969) that two-dimensional turbulence at
high Reynolds number can exhibit two distinct inertial
ranges, which can exist simultaneously: an energy-
transferring range in which energy is passed down to
smaller wavenumbers and an enstrophy-transferring
range in which enstrophy is passed up to larger wave-
numbers. In a steady state, energy and enstrophy are
fed to the flow at wavenumbers lying between the two
ranges. The TFM yields both ranges. Computer
simulations are consistent with the existence of these
ranges but do not prove their existence (Lilly, 1971,
1972; Herring et al., 1974).

In the present section, we shall carry out an analysis
of subgrid-scale, effective-eddy-viscosity phenomena in
the two-dimensional energy inertial range so as to
parallel as closely as possible the three-dimensional
analysis of Section 3. The practical relevance is minimal,
but this analysis is valuable because it contrasts two-
and three-dimensional dynamics under as symmetric
conditions as possible and serves as a basis for the more
relevant case of the enstrophy inertial range.

We shall start by indicating how the basic equations
of Section 2 are altered in two dimensions. Eqgs. (2.1)-
(2.6) are unchanged. Eq. (2.7) for the DIA dynamic
damping function is changed to

7kits) =2 / / 5ol £,0)G p,,) U h5)dpdg,  (4.1)

where
be(k,p,9) =2k~ (k*—¢®) (p—¢?) sina. (4.2)

In (2.8), (L/2x)? is changed to (L/2w)%, while (2.13)
becomes
E(kt)=nkU(ktt). - (4.3)

Eq. (2.10) is unchanged, as is (2.12), and (2.11) changes
by the replacement
whpgbs(k,p,q) — Fba(k,p,9).
There is no change in (2.14). The DIA energy-transfer
formula (2.15) changes by the replacement
47*k®hs (k)p7Q)Pq — 27k*b, (k:P,Q)

Egs. (2.16)-(2.20) are unchanged, as is (2.23). The
TFM expressions for the damping function [(2.21)]
and the transfer function [[(2.22) ] become, respectively,

nkt) =k / / 5ol 200 DU g)dpdg, (4.4)

T(kypyq’t) == 2wk3b, (k7PJQ)

x[akpq(t)U(Prt) —equ(t)U(k;t)]U(%t)- (4-5)
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Fi1c. 2. Energy transfer across k., in the two-dimensional energy inertial range. Curve 1,
normalized eddy viscosity v(%|km)/|»(0]ks)|; curve 2, integrated transfer —TI(k|kn); curve

3, input contribution —v;(k}km)/|v(0]km)|.

Now we are equipped to consider eddy viscosity
formulas in two dimensions. The defining relations
(3.1)-(3.4) are unchanged from three dimensions, but
the expansion procedure that gave (3.5) now gives

bt d
ok o) = (/4) / buar, U@ WG (40

This formula differs from (3.5) in several interesting
ways. First, there is no term in U(g) alone; U(q)
appears in the integrand only as the derivative of the
enstrophy mode intensity ¢*U{g). Second, as a result,
v(k| k) is negative if the enstrophy mode intensity is a
decreasing function of ¢ for ¢> k... Third, the integrand
is a total derivative except for the ¢ dependence of 6.
This means that any addition to the spectrum U (g) for
g¢>kn which vanishes at ¢=£,, would add nothing to
v(k|kn) were it not for the ¢ dependence of @44 In
common with (3.5), Eq. (4.6) gives v(| k..) independent
of & for k<kn because then 8,4, becomes independent
of k; it therefore remains reasonable to continue to call
v(k|kn) an eddy viscosity. The differences we have
listed imply that the physical basis of eddy viscosity
in two dimensions differs radically from the three-
dimensional case. In Section 5 we shall explore the
explicit dynamical mechanisms which are responsible.

The TFM yields (3.6) and (3.8) in the two-
dimensional energy inertial range, but e, as defined by
(3.7), is negative corresponding to the fact that energy
is flowing toward smaller wavenumbers (Kraichnan,
1971b). The asymptotic relation (3.10) continues to
hold. But the numerical decrease of Q(v) with v is
slower in two dimensions than in three indicating that

the energy-transferring interactions are less local in
wavenumber.

Fig. 2 shows the results of a numerical evaluation of
v(k|kn) for the two-dimensional energy inertial range,
together with the functions v;(k|k.) and II(k|kns) as
defined in Section 3. The principal qualitative differ-
ences from three dimensions are the negative asymptotic
value »(0]%.), the negative asymptotic value II(0|%.)
=TI(kn), and the fact that »(k|k.,,) and I1(k] k) change
sign near k=*%,. The value obtained by substituting
(3.6) and (3.8) into (4.6) is

vkl bm) = —2%CH " | thnt, k<bm, (4.7)

which is to be compared with (3.11). The constants C
and p have different numerical values in two and three
dimensions (Kraichnan, 1971b). '

Fig. 2 indicates that the overall energy -transfer is
dominated by relatively small values of &/&n (smaller
than in these dimensions) for which the asymptotic
negative eddy viscosity »(0|k,) is a fair approximation.
Thus 509, of the total transfer comes from the approxi-
mate domain %< 0.3%,, for which »(&|%x) is within 15%,
of the asymptotic value and about 85%, comes from
£k<0.5k,, for which »(k|k,) is within 309, of the
asymptotic value. For %k=0.3kn,, the input-term
contribution is about 5% of »(0]%,,) and rises to about
30% of »(0] k) at k=0.5km.

The cusp behavior for kn—k<k, is essentially the
same as in Fig. 1 and is due to the same physical
process: diffusion in wavenumber across k. due to
coherent stretching and unstretching by very small
wavenumber excitation. The cusp in »(k|km) has
(B km)~2.1|»(0|kw)|. The divergence in v;(k|kn)
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at k=%, is also similar to the three-dimensional case.
The positive regions of v(k|k,) and II(%|k,) for small
kn—% represent a flow of enstrophy from below to
above the boundary k. and serve to make the total
enstrophy transfer zero, in accord with the underlying
theory of the two-dimensional energy transferring range
(Xraichnan, 1967).

5. Mechanism of the negative eddy viscosity

The inviscid vorticity equation in two dimensions can
be written
(8/8t+u- V)w=0, (5.1)

where we drop the tilde and represent the velocity field
and vorticity in « space by u(x,)) and w(x,t). This is
identical with the advection equation of a passive scalar
field in the absence of molecular diffusion. The differ-
ence is that w and u are related by

W= 6“2/6361—3141/6962, (52)

while there is no such functional relation in the case of
the passive scalar.

We consider scales of motion small enough that most
of the shear which acts on these scales arises from much
larger spatial scales, with, consequently, much higher
kinetic energy. The sheared small scales should then
negligibly react on the shearing scales and should be
strained as if the vorticity field associated with the
small scales were a passive scalar (Kraichnan, 1975a).
We wish now to examine this asymptotic case in order
to expose the mechanisms responsible for the peculiar
negative eddy viscosity found in Section 4. We shall
show that the passage of kinetic energy from small
scales to the large-scale straining field can be regarded
as an interference, or interaction, between the large-
scale field and a secondary flow associated with the
small scales.

The discussion is clearest if the velocity potential
associated with the small-scale motion has the form

¥ (x) =k2f(x) cos(kxs) }
f(x)=exp[ =} (xl+=?)/D7])’

i.e., a co-sinusoidal variation localized in a domain of
size D. The associated velocity field is

(5.3)

wW=— alﬁ/axz
=k~ f[sin(kxs)+ (x2/kD?) cos(kxs)]b.
%= 0y/d%1= ~k~Y(x1/kD?) f cos(kxs)

We take 2D>>1 so that the spectrum of w is concentrated
about wavenumber £ and let this small-scale motion
exist in the presence of a uniform straining field whose
velocity potential is

(5.4)

V=—axy, (5.5)

where ¢ is a parameter.
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It follows directly from (5.1) that the effect of this
potential straining flow on the small-scale motion is to
squeeze the vorticity field along the x, axis and stretch
it along the x; axis so that areas remain constant and
the value of the vorticity at each point moving with the
straining remains constant. The result is that to leading
order in an expansion in powers of (kD)! the effect on
the vorticity field is a distortion of the shaping function
f into elliptical form together with a change of the
central wavenumber £ according to

dk/dt=ak. (5.6)

Then (5.4) shows that the kinetic energy of the small-
scale motion changes according to

dF/dt=—2aE, (5.7)

to leading order. The initial kinetic energy according
to (5.4) is #D?*/4 to leading order so that the initial rate
of decrease of kinetic energy, associated with the
transfer of vorticity to higher wavenumber, is

(dE/dt)4mo= —maD?/2. (5.8)

We shall now show that the kinetic energy thus lost
shows up as kinetic energy of interaction between the
straining field and the self-generated secondary flow
associated with the small-scale motion. If v is the
velocity field due to the potential (5.5), then this
interaction energy is

/v-ud2x=/[(aV/axz)(aw/axz)
+(3V/0x1) (8¢/0x1) Jd%x.  (5.9)

Partial integration transforms this to

v-udix= —-/sznlxdzx= —/dezx. (5.10)/

The rate of change of the interaction energy is then

d
d_ v-udiy= —-/V(dw/dt)d%c.
t

(5.11)

Note that the total velocity field is v-u.

Since V varies slowly, only secular contributions to
dw/dt (those which survive averaging over distances
large compared to &) can affect the integral in (5.11)
to leading order in 1/kD. The secular contributions
must be due to self-interaction of the small-scale motion
(secondary flow) since the straining motion v leaves
unchanged the vorticity of each fluid element. To find
the development of the secondary flow, we again use
(5.1) but now with u as the velocity field (5.4). The
initial value (dw/df)im0 follows by straightforward
substitution. The full expression has a number of terms,
but the secular part, obtained by averaging the sine
and cosine functions over distances large compared
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to £~! but small compared to D, is
[(dw/ dt) t=0]secular= (2x1x2/ D4) f 2 (512)

to leading order in 1/kD. If (5.12) and (5.5) are sub-
stituted into (5.11), the result is

d .
— | voud*x=maD?2, ¢=0,
dat

- (5.13)

which precisely balances the loss (5.8) of kinetic self-
energy.

The secondary flow whose initial buildup is described
by (5.12) consists of four vortices of size ~D, one in
each quadrant of the (x1,x.) plane. Each vortex rotates
in the opposite sense from those in the adjacent
quadrants, and the combined flow brings fluid toward
the origin along the x. axis and removes it along the
x3 axis. Thus this vortex flow reinforces the velocity

field near the origin associated with (5.5), and the

interaction energy given by (5.13) is positive. If, how-
ever, ¢ is negative, then the central wavenumber of the
small-scale motion decreases and the energy E increases,
according to (5.6) and (5.7), so that correspondingly
the interaction energy (5.13) is negative.

If a small-scale motion has the form of a compact
blob of vorticity, or an assembly of uncorrelated blobs,
a steady straining will eventually draw a typical blob
out into an elongated shape, with corresponding thin-
ning and increase of typical wavenumber. The typical
result will be a decrease of the kinetic energy of the

small-scale motion and a corresponding reinforcement

of the straining field, essentially as described above.
Now it is important to note that this energy transfer
between small-scale and large-scale motion differs in an
important respect from the negative-eddy-viscosity
effects discussed in Section 4. There, we found an

asymptotically constant eddy coefficient for small wave--

numbers, so that the rate of energy transfer was propor-
tional to the emergy in the large scales (small wave-
numbers). But according to (5.6) or (5.13), the rate of
energy transfer with constant straining is proportional
to the amplitude of the large-scale motion.

- This difference can be traced to the implicit assump-
tion in the TFM formulas of Section 4 that the effective
straining is not constant but instead has an effective

lifetime fixed by the interaction-time parameters’

[e.g., 84qr in (4.6)]. In the actual fluid, the effective
lifetime of straining by large scales is limited in two
ways: by change in the straining field itself and by
rotation of the small scales relative to the straining
field. Both effects show up in the TFM formulas. If the
effective shear acting on the small scales represented
by U(g) in (4.6) is dominated by wavenumbers <g,
then 6iqq is found from the TFM equations to be
approximately the eddy-circulation time or the corre-
lation time of the large-scale straining motion, which-
ever is shorter. On the other hand, if the shear and
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rotation acting on motions of wavenumber ¢ are due
primarily to interactions that are local in wavenumber,
or scale size, then 0,4, is the order of the eddy-circulation
time or correlation time of the motions of scale 1/4.
Consider now what happens if we repeat the analysis
of the interaction of the small-scale field (5.3) with the
large-scale field (5.5) but simulate variation in the
effective straining by orienting the initial wavevector
k of the small-scale field at a random angle ¢ to the x»
axis instead of having it parallel to the axis as before.
Further, we can make a in (5.5) a randomly varying
function of time @(f), with zero mean. The central
wavenumber % of the small-scale field is then subjected
to randomly alternating stretchings and squeezings
which constitute a diffusion process in wavenumber
rather than a monotonic increase or decrease as before.
The evolution of the central wavevector k(¢) then
obeys
dky/dt=—a(Ok:, dks/dt=a(t)k,, (5.14)

so that, taking k,(0)=k(0) sinp, k2(0)=k(0) cose, we

have .
L) =[e? sin’¢+e* cos’¢ J[£(0) T2, (5:15)
where »
B)= / a(s)ds. (5.16)
Minor manipulation of (5.15) gives
[E@OT/[k(0)F : =
=cosh[ 28(¢) ]+sinh[28(#)] cos(2¢). (5.17)

Now, if we average (5.17) over a uniform distribution
of the random angle ¢ in the interval (0, 2x), we have

(L&) F)/[#(0) T =cosh[28()], (5.18)

where there is no averaging yet over the distribution -
of a(f). Unless the correlation time of a(¢) vanishes,
B(¢) will typically grow with ¢, so that in most realiza-

_ tions the average over random orientations gives a

growth of the wavenumber k(¢) in mean square. Noting
(5.4), and the fact that the kinetic energy of the small-
scale motion is quadratic in velocity, we see that the
kinetic energy is proportional to [k(f)]-2. Averaging
this over the initial angle ¢, we have

(CEOT 2RO = (1/28) / " Lcosh(26)

+sinh(28) cos(2¢) ]"'dp=1. (5.19)
The definite integral is a standard form.

Eq. (5.19) says that there is no change in kinetic
energy averaged over initial orientation, despite the
mean-square increase in k(#). This is possible because
there are always some values of ¢ such that the right-
hand side of (5.17) is less than 1. As B(f) increases in
magnitude with ¢, the range of such ¢ becomes exponen-
tially small. Thus the constancy of ((k(¢)]2) at large ¢
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depends on the contributions of a very few exceptional
realizations in which %(¢) decreases strongly and,
consequently, the kinetic energy increases strongly.

Although (5.19) was obtained under special assump-
tions [the field (5.5) is irrotational and the orientation
of its principal axes is fixed in time], it is of general
validity for the straining of w by a large-scale velocity
field, according to (5.1). Cocke (1969) has shown that
the evolution of the vector k due to any quasi-uniform
straining motion takes the form

Lk () P =k:(0)W 1 (1)k;(0), (5.20)
where W;(2) is a symmetric matrix.2 Moreover, if W;(2)
is transformed to principal axes so that it is diagonal,
the product of the diagonal elements is 1, in consequence
of incompressibility. If now we have an isotropic
distribution of k(0), or of W;(f), and ¢ again measures
the angle between k(0) and the principal axes, we again
obtain (5.15), where e¢~?% and ¢*® represent the two
eigenvalues of W,;(2). The rest of the analysis goes as
before.

We are now in a position to understand two features
of (4.6). First, if f44x is dominated by low-wavenumber
straining, in correspondence to our present discussion,
it is independent of ¢ and the integrand of (4.6) is a
total derivative. Thus any excitation, described by
U{q), which is totally confined to ¢<k., gives zero
contribution to the effective eddy viscosity exerted on
k<Kg. This is a direct consequence of (5.19) which says
that low-wavenumber straining of the small scales gives
a diffusion process in wavenumber with 7o average loss
of kinetic energy. By conservation, there is then no net
gain of kinetic energy by the straining scales. On the
other hand, if k., falls within the small-scale excitation,
the diffusion of the excitation to smaller % occurs at
wavenumbers <k, and is not counted in (4.6) which
then includes only the outward diffusion. The latter
does involve a net loss of kinetic energy by the small
scales and thus gives rise to a negative contribution to
the eddy viscosity. [Note that the role of g in (4.6) is
played by £ in the analysis of the present Section.]

Second, it is clear from symmetry that if the orienta-
tion of k(¥) relative to the straining field is random, or
changes randomly with time, then the amplitude of the
strain, which is signed, cannot contribute to the
averaged diffusion process in wavenumber. This shows
up in (5.18), where the right-hand side is even in the
time-integrated strain 8(¢). Thus the primary control-
ling quantity is essentially the square of the strain,
expressed in suitably isotropically-averaged form. This
is consistent with (4.6), wherein a k-independent eddy
viscosity »(k|ks) implies energy transfer proportional
to the mean-squared strain of the straining wave-
numbers (here k).

3 See also Kraichnan (1974), Section 2.
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6. Two-dimensional enstrophy inertial range

The small scales of a passive scalar field subjected to
random straining by motions of much larger spatial
scale exhibit an equilibrium range of wavenumbers in
which the wavenumber spectrum of the scalar variance
goes as k1 (Batchelor, 1959; Kraichnan, 1974). Since
(5.1) is the same as the scalar advection equation, a
similar range, with enstrophy taking the place of the
scalar variance, should exist for two-dimensional
turbulence, provided that the excitation in the range is
weak enough that it makes negligible contribution to
the effective straining field and thus does not upset the
assumption that the straining motions are at much
smaller wavenumbers than those in the equilibrium
range (Kraichnan, 1967; Leith, 1968 ; Batchelor, 1969).
The weakness assumption is rather artificial and the
more physically reasonable case is one in which the
effective strain acting on wavenumbers in the enstrophy
inertial range comes from much smaller wavenumbers
still in the range itself. This implies logarithmic correc-
tions to the 27! enstrophy spectrum (Kraichnan, 1971b;
Leith and Kraichnan, 1972). In either case, with or
without the logarithmic corrections, the enstrophy
inertial range exhibits asymptotically %-independent
enstrophy transfer rate, as the length of the range
becomes infinite, and asymptotically zero energy
transfer rate.

We wish now to examine the transfer T'(%|k,.) and
effective eddy viscosity »(%|kn) as given by (3.2), (3.4)
and (4.5) when the grid-scale cutoff wavenumber km
falls within the enstrophy inertial range. We shall do
chis first for the uncorrected 27! range and then include
the logarithmic corrections. An enstrophy transfer
function can be defined by

Z(k)=2R2T(k), Z(k|km)=2kT(k|km). (6.1)
For % in the uncorrected 2! range, Z(k) and Z(k|k.)
behave precisely like the corresponding transfer func-
tions of a converted passive scalar.

We let the straining field be dominated by excitation
at wavenumbers ¢< ko, where k¢&Kkmn. Then the triangle
condition of wavenumber interactions implies that
Z (k| k) in the k! range is nonzero only for kn—k< ko,
where by (3.2)

ko
Z(k | k)= 282 f
k.

o

k+q
dg f Ttp0dp.  (62)
k .

The limits in (6.2) express the triangle condition and
the factor % in (3.2) has disappeared because in (6.2)
only p is permitted above k., while in (3.2) either p or ¢
can be the high wavenumber. Under our assumption
about the straining field, the TFM equations for the
interaction times give fipq and 6,4 in (4.5) independent
of their arguments for % in the 2~ range. Their approxi-
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mate value'is -

ko
07 2=2r / U(q)g*dq. (6.3)
0

That is, 8 is approximately the reciprocal shear associ-
ated with the straining field or, alternately, the eddy-
circulation time of that field.

If the coefficient b2(k,p,g) in (4.5) is expanded in
powers of ko/km, (6.2) can be reduced to a simple form.
-The terms in U(k)U(p) are negligible because of our
assumption of weak excitation near kn. The remaining
terms give, to leading order in ko/k.,,

ko

k+q
Z(k | km) =8k ,%0 / dqU(q) / dp sin(k,q)
km— Em

XLa(p) -k ],
where sin(%,¢) is the sine of the interior angle opposite p
in the triangle with sides (k,p,9) and Q(&)=#%U (k)
measures the mean enstrophy per mode. So far we have
not used the fact that Q(&) has the specific dependence
k= [the enstrophy spectrum function is 2wkQ(k)].
Eq. (6.4) is identical with the corresponding transfer
formula for the variance of a passive scalar (cf.
Kraichnan, 1968).

A further reduction of (6.4) is obtained by expanding
sin(k,g) and 2(p) in powers of p—*k and thereby carry-
ing out explicitly the integration over p. The result to
leading order in ko/k, is

Z(k | km)=0(87/3) k3 (k)
ko
J)
kpm—k
where Q'(k)=dQ(k)/dk. The total rate of enstrophy
transfer across the wavenumber &, is

[g*—(kn—k)*]U(g)g""dg, (6.5)

X(k) = — / _m Z (k| ) dk. (6..6)

We now insert (6.5) in (6.6) and let = &,,—&. Then the
order of integration can be reversed according to

ko ko ko q
/ dx f dg= / dq / dx,
: 1] z 0 0 .

and the x integration can be carried out explicitly. The
result of this is

X(m)= — 5/ 2)enS ¥ () 10 /

0

ko

Ulg)g*dg. (6.7)

The total energy transfer from the region (kn— ko, £m)
to leading order in %o/ follows immediately from
(3.3), (6.1) and (6.7); it is :

ko

() = — (/) () 10 / U(qdg. (6.8)

0
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We use the subscript 1 because there is also an energy
transfer across k. associated with the negative eddy
viscosity (4.6) exerted on wavenumbers in the range
(0,ko). Exchanging ¢ and ¢ in (4.6) to conform with
present notation and carrying out the integration, we
find for this transfer

(k) = 27 f Walkn) U(Q)g'dg

Ulg)g’dg, (6.9)

= — (/D) kn)0 /

0

where we have used E(g)=wrqU(g) and have assumed
Q(0)=0 in carrying out the integration in (4.6).

Now consider specifically the case Q(&) « %2 The
right-hand side of (6.7) is then independent of k.. so
that there is constant enstropy transfer. Also, I;(k.)
and I,(k.) are equal and opposite in sign, so that the
net energy transfer across &, vanishes. Both facts are
well-known properties of the enstropy inertial range.
We neglect the enstrophy transfer associated with
(6.9) since it is down from (6.7) by a factor of order
ki*/kn?. In consequence of (6.3), the right-hand sides
of (6.7)-(6.9) are actually proportional to §7!; that is,
to the characteristic shear rate associated with the
large-scale straining motion.

To what extent is it reasonable to think of subgrid-
scale interactions in terms of an effective eddy viscosity
in the present case? According to (4.6), the effect on the
large-scale straining motions is well-representable, in

- the sense that the eddy viscosity is independent of

wavenumber [£in (4.6), ¢ in the notation of the present
section ]. However, this eddy viscosity is negative and,
moreover, it has a negligible effect on the dynamics of
the large scales because these scales have energy very
large compared to that of the 27! range wavenumbers.
The question of practical importance for possible
applications to simulations is how well (6.5) can be
modelled by an effective eddy viscosity. It would appear
that the answer is very poorly. First, the integral in (6.5)
would have to be independent of % for the eddy viscosity
v(k|ka) to be k-independent [we note k=k, in (6.5)].
Instead the integral varies strongly as £ moves in the
range (Bn—ko, k»n) and vanishes for & outside this
range. In particular, v(k|k.) does not scale with &, as
it does for the three- and two-dimensional energy iner-
tial ranges. Instead it scales with the nonlocal param-
eter kg. Thus as ko/kn — 0, the significant contributions
to Z(k|km) or v(k|k») are squeezed into a vanishingly
small fractional deviation (kn—£&)/km.

To illustrate the k-independence implied by (6.5),
we can construct an easily integrated example by taking

U(q) = ¢* exp(—¢*/kd), (6.10)

which falls off rapidly for ¢>%, instead of dropping
abruptly to zero, and correspondingly replacing the
upper integration limit in (6.5) by infinity. Then we
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find
Z(k\kwm)/Z (k| k) =expl — (kn—Fk)?/k&]. (6.11)

There is not only a scaling with %, instead of with k.,
alone, but also the shape of Z(k|%.,) for k near k,, de-
pends on the shape of U(g) for the low ¢ which dominate
the effective straining.

If the enstrophy inertial range is produced by cascade
from lower wavenumbers where energy and enstrophy
are injected into the fluid, most of the effective strain
acting on wavenumbers high in the range is due to
lower wavenumbers in the inertial range itself, in
distinction to the artificial case treated above wehre the
straining excitation is separate and at wavenumbers
below the inertial range. The 2! dependence for the
enstrophy spectrum is then not self-consistent, because
each octave of a k7! range would make an equal con-
tribution to the effective strain acting on higher wave-
numbers, with the result that the effective strain would
increase with wavenumber. Self-consistency is restored
if the spectrum decreases slightly faster than k™!
(Xraichnan, 1971b). Thus,

E(k)=C"x3In(k/ke) T
U(k)=E(k)/xk )
Q&) =RU (k)

where C’ is a numerical constant of order 1 and X is the
constant rate of enstrophy transfer to higher wave-
numbers. The TFM equations for 6ip, in the log-
corrected range give

Oipe=[u (k) +u(p)+u(9)], (6.13)

where u(%) is a modal dynamic damping rate given by
(k) =3(2X)* I In(k/ko) J*

(6.12)

1 (6.14)
I= / (1412%)1dz=0.75624
(1]

(Leith and Kraichnan, 1972). The wavenumber %, in
(6.12) marks the bottom of the enstrophy inertial range,
and it is assumed that wavenumbers below k¢ make a
negligible contribution to the effective strain acting on
the range.

The logarithmic corrections make only minor changes
in the analysis that leads to (6.4) and (6.5). If the
enstrophy range is long, the strain acting on wave-
numbers near a typical wavenumber %, in the range
still comes from ¢<<k,. This implies, on examination,
that the U(p)U (k) term in (4.5) is still negligible and
that Oxp, is well approximated by [2u (k)] To leading
order in ko/kn and [In(k/k¢) ], the equation which
replaces (6.5) is found to be

Z(k| k)= (47/3)km*@ (k) Jus(km) I

% f [ = (k)Y U g, (6.15)
Fm—F
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where Q(k,) and U(g) are given by (6.12). The upper
integration limit in (6.15) should properly be some
wavenumber ¢1<<k below which most of the effective
strain lies, but since U(g) falls off like ¢~ (times log
correction), there is negligible error in replacing the
limit by .

With (6.12) inserted, (6.15) gives a fall-off of Z (k| k)
away from k, which goes like (AR)~'[In(Ak/ko)]*
for AR ko(Ak=kn—Ek). For Ak~ky, the behavior of
Z (k| k) again depends on the specific form of U(g) for
wavenumbers ~ k&g, where (6.12) must be modified. In
order to illustrate the behavior, we can make the simple
assumption that (6.12) holds down to k= ek,, where the
log factor is 1, and then falls abruptly to zero. The
resultant form for Z (k| k) is

Z (k| km) = (47/3) ki’ (km) ]
X[ (km) ] ke~ T (AR /Ro),  (6.16)

where

J(x)= / i (z2—x2)4~5(Inz)3dz, (6.17)

and the lower limit in (6.17) is the lesser of x and e. As
in the case of the uncorrected k! range, the scaling
with & is evident. A plot of J(Ak/ko) is given in Fig. 3,

For large x, J(x) asymptotically approaches
Jo (%) =3 (1+437/8)x7 (Inx) 73,

and J,(Ak/kg) is also plotted in Fig. 3.

The approximations which lead to (6.15) and (6.16)
are valid only for k,,—k<kn. This region contains all
the significant contributions to X(k.) when the en-
strophy range is long and extends far below k... How-
ever, the energy transfer function 7'(k|km) is significant
also in the region k<&k, where the negative eddy-
viscosity formula (4.6) is applicable. If (6.12)-(6.14)
are substituted into (4.6) and an integration by parts is
performed, the terms involving the derivative of @ are
down by a logarithmic factor from the integrated part
so that the asymptotic result is

v(q| km) =~ (/8) L (km) 172 (km)
= —1Q2D)C" k[ (km/ ko) T2

The energy transfer associated with the negative
viscosity is then

T2(q| km) =2v(g| kn)g*E(q)
=12D)HC") Xk [In (b ko) T
Xq'[In(g/ko)]3.

What happens now in the intermediate region where
neither asymptotic expression for energy transfer is
valid? The total energy transfer across kn due to wave-
numbers for which k,—k<kn in the asymptotically
long inertial range is ~Xkn, 2 If (6.20) is integrated
over ¢ from g=-¢eko to a wavenumber ¢, the result is
~Xkn? for gi~kn [Note that [+ '(Inx)"idx

(6.18)

(6.19)

(6.20)
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Ak/kg

F16. 3. The functions J(Ak/k,), curve 1, and J,,(Ak/k,), curve 2, for the log-corrected enstrophy
inertial range, as given by (6.17) and (6.18).

=(3/2)(Inx)t.] This implies that (6.20) becomes in-
applicable for ¢ the order of, say, £.,/2 and that T'(¢|%.,,)
changes sign at a wavenumber of this order. This is
corroborated by the fact that Ts(q| k) given by (6.20)
and the transfer Z(%|k.)/2k* obtained from (6.16) be-
come equal in magnitude at a wavenumber of this order.

7. Conclusions and discussion

In this paper we have illustrated some theoretical
limitations on the representation of subgrid scales by
an eddy viscosity. Our approach has been to examine;
by means of closure approximations and especially the
test-field model (TFM) closure, the contributions of
subgrid scales to the energy and enstrophy balance of
the explicit scales in the asymptotic energy and en-
strophy inertial ranges. Thus a cutoff wavenumber k.,
was chosen which divides the subgrid scales (> k,.) from
the explicit scales (<kn). Expressions were then found
for the contribution T'(%|k.) to the net energy transfer
rate into wavenumber k<k., due to all nonlinear
processes (advection and pressure forces) which involve
any wavenumber > k.,.. A corresponding effective eddy
viscosity was defined by (3.4), in which E(k) is the
energy spectrum function of the isotropic turbulence,
and a correspondlng enstrophy transfer rate is deﬁned
by (6.1). The precise definition of T (%] k) itself is given
by (3.2) and the associated equations.

If the analogy with molecular viscosity were perfect,
the effective eddy viscosity v(k|k.,) would be inde-
pendent of both %k and E(k). We have noted that in
general this cannot be expected because there is a
continuity of scale size between explicit and subgrid
scales. However, for k<k.,, there is a clean separation

of scales, analogous to the separation between hydro-
dynamic and thermal agitation scales, and we indeed
found that v»(k|%a) is so independent. The asymptotic
expressions for v(k|kn) at k&&Kk, are given by (3.5) in
three dimensions and by (4.6) in two dimensions,
according to the TFM. In the case of the energy-
transferring inertial range [E(k)xk~5/%], these equa-
tions reduce to the respective forms (3.11) and (4.7),
wherein e is the overall rate of energy transfer through
the inertial range and u is a parameter of order 1
associated with the TFM.

The nature and magnitude of the departure of
v(k| k) from its asymptotic constant value when £ is
comparable to %, is shown by Figs. 1 and 2 for the
three- and two-dimensional energy-transferring ranges,
respectively. In three dimensions approximately 25%,
of the total transfer across k. comes from k/k,<0.5,
where v(k|kn) is within about 159, of its asymptotic
value. About 509, of the total transfer comes from
k>0.75k,,, where v(k|k») is rising sharply above its
asymptotic value. We found that the cusp in 7T'(k|km)
at k=rF., is associated with the coherent stretching and
unstretching of structures of wavenumber ~%, due to
straining by low wavenumbers (large spatial scales).
This is a dynamical mechanism very different in nature
from molecular viscosity. Here T'(k|kx) is not propor-
tional to E(k) but instead involves close balancé be-
tween an oufput term in the TFM transfer expression
which is so proportional and an inpui term which is not
(see Section 2). The shape of the cusp very close to %y
is not universal in form when the inertial range is of
finite extent but instead depends on the spectrum shape
in the energy-containing range of wavenumbers.
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The curve for v(k| k) in the two-dimensional energy-
transferring inertial range shown in Fig. 2 resembles
that for three dimensions. The cusp behavior at k=k,,
is associated with the same physical mechanism of
coherent straining. The striking difference is that the
asymptotic constant value of »(k|kn) for kKk, is
negative. This is a necessary consequence of the fact
that energy flow in the two-dimensional range is
reversed, going from larger to smaller wavenumbers.
The mechanism of the negative eddy viscosity is dis-
cussed in some detail in Section 5, where it is found
to be due to interaction of the straining field of the
large-scale motion (here the small wavenumber %) with
a secondary flow associated with the small-scale motion
(here wavenumbers > £.). A corollary of that discussion
is that the ordinary eddy-viscosity mechanism in three
dimensions, whereby small scales are parasitic on the
energy of the large scales, is intrinsically three-
dimensional and cannot take place if the small-scale
motion is coplanar with the local large-scale motion.
Fig. 2 illustrates that the interaction of wavenumbers
in the two-dimensional energy inertial range is rather
less local in wavenumber than for the three-dimensional
range. About 509 of the total transfer takes place at
wavenumbers k<0.3kn, where the function v(k|km) is
within 159, of its asymptotic value.

The general character of the effective eddy viscosity
v(k| k) in Fig. 2, a constant negative asymptotic region
together with a positive cusp behavior near k=Ekn,
carries over to the enstrophy-transferring inertial range
in two dimensions. However, there are also crucially
important differences. Also, the cusp region dominates
the enstrophy transfer and thereby is of greater interest
in the enstrophy-transferring range.

If the effective rate of strain acting on motions in the
enstrophy inertial range is dominated by strong excita-
tions at wavenumbers below this range (an artificial
assumption), then the enstrophy spectrum in the range
goes like 27! so that E(k) is like k3. The straining of
vorticity at wavenumbers in the range is then precisely
analogous to the straining of a passive scalar field, with
the dynamically unimportant exception that, in the
case of vorticity, there is an energy-balancing reaction
on the straining scales expressed by the asymptotic
constant negative eddy viscosity. The effect of the
straining on enstrophy transfer from wavenumbers &
below and near k.. to wavenumbers above k, is de-
scribed by (6.4) and (6.5) which give the cusplike part
of the transfer function and are identical with corre-
sponding transfer expressions for a passive scalar field.

Two important features of (6.4) and (6.5) are that
(i) the enstrophy transfer is concentrated in a region of
width kg at k.., where ko is a characteristic wavenumber
of the straining velocity field; and (ii) the transfer is
not proportional to the enstrophy intensity Q(k) as one
would expect by analogy to ordinary viscosity but to
the derivative dQ(k)/dk. The first feature means that
the transfer curve does not scale with %, alone but
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with ko, a parameter from outside the range. If k,, is
increased, the transfer remains concentrated in the
width %o and thus is squeezed into an ever-decreasing
fraction of k.. A specific example is given by (6.10)
and (6.11). The second feature means that in x space
the transfer cannot be well approximated by an operator
of the form w44y V2. Instead, the enstrophy transfer is
better described as a diffusion process in wavenumber
space.

In an enstrophy inertial range arising naturally from
input of energy and enstrophy at the bottom of the
range, the effective straining field is dominated by
excitations in the range itself. However, it is still true
that, if the range is long, the effective strain acting on
wavenumbers well within the range comes from much
smaller wavenumbers, although these wavenumbers
now are themselves in the enstrophy range. The result
is a logarithmic correction to the 2! spectrum. These
corrections leave the conclusions of the Ppreceding
paragraph intact. The enstrophy transfer is still con-
centrated in a region of width <k, immediately below
km. The shape of the transfer curve in this region de-
pends on the spectrum shape in the vicinity of ko, where
now ko is characteristic of the bottom of the enstrophy-
transferring range. The log-corrected transfer function
is given by (6.15), and an explicit illustration for a
simple choice of spectrum function shape is given
in (6.16) and Fig. 3.

The enstrophy inertial range asymptotically has
constant enstrophy transfer, independent of &, and zero
energy transfer when it is infinitely long. The net zero
energy transfer comes about because the upward energy
transfer associated with enstrophy transfer in the
vicinity of km is exactly compensated by the energy
transfer to the principal straining wavenumbers
associated with the negative region of the function
v(k|ks). The physical mechanism for this is the inter-
action of straining field with secondary flow discussed
in Section 5. An interesting result obtained there is
that an average over randomly oriented quasi-uniform
straining of small scales gives zero net energy transfer
to the straining field, i.e., zero net eddy viscosity. This
is because, in addition to the overall tendency to strain
the small scales into higher wavenumber (and therefore,
in view of enstrophy conservation, lower kinetic energy)
structures, there is also some probability of reverse
straining, into lower wavenumber structures. The dis-
tribution of the latter is highly intermittent and repre-
sents a gain of energy of the small-scale structures
which just compensates, on the average, the loss from
the typical straining to higher wavenumbers. We get a
nonzero, negative eddy viscosity »(k|km) for k<<kn~ be-
cause we include in »(% | k..) only contributions involving
the subgrid wavenumbers >k, while the reverse
straining in effect involves only wavenumbers <Z&m. If
there is no artificial division made into explicit and
subgrid wavenumbers, and the fofal transfer function
is considered, only the lowest wavenumbers contributing
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substantially to the overall straining field actually ex-
perience a net negative eddy viscosity.

Our analysis has been confined to the effects of sub-
grid scales on energy and enstrophy transfer is isotropic
turbulence. The results are not directly applicable to
the use of eddy viscosities to represent subgrid scales in
the computer simulation of a single flow, which is
locally nonisotropic everywhere. However, the theo-
retical difficulties with the eddy-viscosity concept we
have brought out are based on physical mechanisms
which can be expected to operate also in computer
simulations. We feel, therefore, that the theoretical
basis for the use of simple eddy viscosities to represent
subgrid scales is substantially insecure. Why then have
" they worked so well in practice? Apparently this is
largely because the flow has built-in compensatory
mechanisms. The effect of a crude and inaccurate term
to represent the passage of energy or enstrophy through
the boundary at £,, has the principal effect of distorting
the flow in a relatively restricted wavenumber range
below %n. It remains to be seen whether the use of more
accurate, and. thereby more complicated, representa-
tions of subgrid scales pays off. For it to do so, the
increased accuracy near k., and thereby the implied
possibility of lowering k. in a given calculation, must
overbalance the added computational load of carrying
the more complex subgrid-scale representation. We
intend in a later paper to discuss some modifications of
conventional eddy-viscosity formulas which are sug-
gested by the present work, and to take up also the
problem of representing the random excitation of ex-
plicit scales by subgrid scales. In our present discussion
of isotropic turbulence, this phenomenon is lumped into
what we have termed the input term in the energy
transfer expression. But in the computation of a single
flow, the random excitation cannot be handled at all
by an eddy-viscosity-like treatment.
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